EVA STAR Trefferanzeige

Volltext Volltext.pdf1.pdf (102 KB)
URN (für Zitat) http://nbn-resolving.org/urn:nbn:de:swb:90-AAA1818948
Titel Lower and upper bounds for (sums of) binomial coefficients.
Autor Worsch, Thomas
Institution Fakultät für Informatik (INFORMATIK)
Informatik für Ingenieure und Naturwissenschaftler (Inf. für Ing. u. Naturwiss.)
Dokumenttyp Buch
Jahr 1994
Erscheinungsvermerk Karlsruhe 1994. (Interner Bericht. Fakultät für Informatik, Universität Karlsruhe. 1994,31.)
Abstract
Apparently there is no closed form for the partial sum of a row of
Pascal's triangle. In this paper lower and upper bounds for
binomial coefficients and their sums are deduced. In the case of
single coefficients these bounds differ only by a constant factor
which is arbitrarily close to 1 for sufficiently large n. In the
case of sums the gap between lower and upper bound is larger but
still small enough to be useful in some applications. The upper
bound obtained for sums is somewhat better than that resulting
from a Chernoff bound.